Introductory Euclidean Geometry

by Arnav Kumar

An understanding of similarity, congruence, and several other definitions is assumed.

1 Directed Angles

Please see Evan Chen's handout on the topic (https://web.evanchen.cc/handouts/Directed-Angles/ Directed-Angles.pdf). There is also the idea of directed line segments and lines, but this is more similar to vectors and need not be covered.

2 Triangles

Theorem 1. (Sum of Interior Angles in a Triangle) Given a triangle $\triangle A B C$, the sum of the interior angles of the triangle always sum to 180° or π radians. In terms of directed angles, we can say that $\measuredangle A B C+\measuredangle B C A+\measuredangle C A B=0$.

Corollary 1. Given a triangle $\triangle A B C$ with D on the extension of $A B$ past B, then we have that $\angle D B C=$ $\angle B C A+\angle C A B$.

Theorem 2. (Pythagorean Theorem) Triangle $A B C$ is a right triangle with $\angle A B C=90^{\circ}$. Now iff we have $A B^{2}+B C^{2}=A C^{2}$.

Theorem 3. (Area of a Triangle) Let $A B C$ be a triangle. Let h be the length of the perpendicular dropped from A to $B C$. Let b be the length of segment $B C$. The area of $A B C$, sometimes denoted $|A B C|$ is $\frac{1}{2} b h$.

There are also some well known triangles which might be useful to know the dimensions of. The most notable of these is the equilateral triangle. If an equilateral triangle has side length 2 , then the height is $\sqrt{3}$, and the area is $\sqrt{3}$.

3 Scaling, Transformations, and Translations

While presented informally here, it may be useful to take a look at units to know how much certain values change. For example, if we scale a triangle $3 \times$, the area increases $9 \times$, because area is length $*$ length and the scaling happens in both directions.

Now we'll get into a very powerful technique in geometry, which is a form of manipulation of our diagram. We can choose translate or rotate parts of our diagram as we wish to form figures which might be conducive for us. There are many examples of this, but here is an example from the A Taste Of Mathematics series:

Example 1. In quadrilateral $A B C D$, we have $A D=B C$, and $\angle A B D+\angle B D C=180^{\circ}$. Show that $\angle B A D=$ $\angle B C D$.

The trick to this problem is to take the triangle $B C D$, and transform it (while maintaining angles and lengths) so that the corners on B and D swap positions. Let the position of the last vertex be C^{\prime}. Now, we see that $180^{\circ}=\angle A B D+\angle B D C=\angle A B D+\angle D B C^{\prime}$ which means that B lies on $A C^{\prime}$. Additionally, $A D=B C=D C^{\prime}$ which means that $\triangle A D C^{\prime}$ is isosceles. Finally, we get $\angle B A D=\angle B C^{\prime} D=\angle B C D$.

4 Exercises

Exercise 1. (1999 IMC A2) Find the sum of the angles in the following diagram:

Exercise 2. (1999 IMC A4) A 60 meter tall building casts a shadow of length 40 meters. What is the length of the shadow cast by a pole of height 2 meters?

Exercise 3. (1999 IMC A7) Three circles of equal radius, r, are mutually tangent to each other and to the triangle of side length 1 which circumscribes them (and touches each circle twice). Find the value of r.

Exercise 4. (1999 IMC A10) Right triangle $A B C$ has legs $A C$ and $A B$ of length 8 and 15 respectively. Points E and G lie on $A C$ and points D and F lie on $A B$ such that the segments $C D, D E, E F$, and $F G$ split up $A B C$ into five triangles of equal area. Find which of the segments $C D, D E, E F$, and $F G$ has integral length.

Exercise 5. (1999 IMC B2) Right triangle $A B C$ has $B C \perp A C . D$ lies on $B C$ such that $B C=4 B D$ and E lies on $A C$ such that $\mathrm{AC}=8 C E$. Find the length of $A B$ if $B E$ and $A D$ have lengths 52 and 164 respectively.

Exercise 6. (2000 IMC A7) Find $\angle B A D$ if D is a point on $B C$ of $\triangle A B C$ such that $A C=C D$ and $\angle C A B=\angle A B C+45^{\circ}$.
Exercise 7. (2000 IMC A9) P is a point in rectangle $A B C D$ such that $P A=4, P B=6$, and $P D=9$. Find $P C$.
IMC refers to the Junior High School Division International Mathematics Competition.

