Points in a Triangle

by Arnav Kumar

Definition 1. Given a triangle $A B C$, a cevian is a line segment that connects a vertex to the (possibly extended) opposite side of the triangle.

1 Circumcircles and Circumcenters

Definition 2. Given a triangle $A B C$, we call the unique circle which passes through all 3 points the circumcircle of $A B C$. By convention, the circumcenter (the center of the circumcircle) is denoted O and has radius equal to the circumradius of R. If $\odot O$ is the circumcircle of $A B C$, we say that $\triangle A B C$ is inscribed in the circle.

Corollary 1. The circumcenter is the meeting point of the perpendicular bisectors of each side of the triangle.

Theorem 1. If O is the circumcenter of $\triangle A B C$, then $\angle B O C=2 a, \angle O B C=\angle O C B=90^{\circ}-a$.

2 Incircles and Incenters

Definition 3. Given a triangle $A B C$, we call the unique circle which is tangent to all of the sides of the triangle from the inside the incircle. The center of the incircle is the incenter and is denoted I and the inradius is denoted r. If $\odot I$ is the incircle of $A B C$, we say that it is inscribed in $\triangle A B C$.

Corollary 2. The incenter is the meeting point of the angle bisectors of each vertex of a triangle.

Theorem 2. If I is the incenter of $\triangle A B C$, then $\angle B I C=90^{\circ}+\frac{a}{2}, \angle I B C=\frac{b}{2}$. and $\angle I C B=\frac{c}{2}$.

3 Excenters and Excircles

Definition 4. Given a triangle $A B C$, we call a circle which is outside the triangle, but tangent to all of the sides of the triangle (or their extensions) an excircle. The 3 excircles of a triangle correspond to the vertex which is opposite them in the triangle. The center of the A-excircle in triangle $A B C$ is the \boldsymbol{A} excenter and is denoted I_{A} with exradius r_{A}.

Corollary 3. The A-excenter is the meeting point of the internal angle bisector at A and the external angle bisectors at B and C.

Theorem 3. If I_{A} is the A-excenter of $\triangle A B C$, then $\angle B I_{A} C=90^{\circ}-\frac{a}{2}, \angle A I_{A} B=\frac{c}{2}$. and $\angle A I_{A} C=\frac{b}{2}$.

4 Orthocenters

Definition 5. Given a triangle $A B C$, an altitude dropped from any vertex is the cevian from the vertex which is perpendicular to the opposite side of the triangle. The orthocenter is the meeting point of the the 3 altitudes dropped from each vertex to the opposite side and is generally denoted H.

Theorem 4. If H is the orthocenter of $\triangle A B C$, then $\angle B H C=180^{\circ}-a, \angle H B C=90^{\circ}-c$. and $\angle H C B=$ $90^{\circ}-b$.

5 Centroids

Definition 6. Given a triangle $A B C$, the cevian $A D$ is called a median if $B D=D C$. The 3 medians of a triangle are concurrent and called the centroid, usually denoted G.

Theorem 5. If $A D, B E$, and $C F$ are medians of triangle $A B C$ which intersect at centroid G, then we have that $A G=2 \cdot G D$.

6 Exercises

All of these exercise problems are well known results.

Exercise 1. Show that the circumcenter of a right triangle is the midpoint of its hypotenuse.
Exercise 2. Show that given a triangle $A B C$, the intersections of the internal and external bisectors of $\angle B A C$ with the perpendicular bisector of $B C$ both lie on the circumcircle of $A B C$.

Exercise 3. Let $A B C$ be a triangle with circumcenter O and orthocenter H. Let D be the point directly opposite A on the circumcircle, let M be the midpoint of $B C$, and let E be the reflection of H on $B C$. Show that

1. $B H C D$ is a parallelogram
2. M is the midpoint of $H D$
3. E lies on the circumcircle of $A B C$
4. $\angle B A H=\angle C A O$
