Points in a Triangle

by Arnav Kumar

Definition 1. Given a triangle ABC, a **cevian** is a line segment that connects a vertex to the (possibly extended) opposite side of the triangle.

1 Circumcircles and Circumcenters

Definition 2. Given a triangle ABC, we call the unique circle which passes through all 3 points the circumcircle of ABC. By convention, the circumcenter (the center of the circumcircle) is denoted O and has radius equal to the circumradius of R. If $\odot O$ is the circumcircle of ABC, we say that $\triangle ABC$ is inscribed in the circle.

Corollary 1. The circumcenter is the meeting point of the perpendicular bisectors of each side of the triangle.

Theorem 1. If O is the circumcenter of $\triangle ABC$, then $\angle BOC = 2a$, $\angle OBC = \angle OCB = 90^{\circ} - a$.

2 Incircles and Incenters

Definition 3. Given a triangle ABC, we call the unique circle which is tangent to all of the sides of the triangle from the inside the **incircle**. The center of the incircle is the **incenter** and is denoted I and the **inradius** is denoted r. If $\odot I$ is the incircle of ABC, we say that it is **inscribed** in $\triangle ABC$.

Corollary 2. The incenter is the meeting point of the angle bisectors of each vertex of a triangle.

Theorem 2. If I is the incenter of $\triangle ABC$, then $\angle BIC = 90^{\circ} + \frac{a}{2}$, $\angle IBC = \frac{b}{2}$. and $\angle ICB = \frac{c}{2}$.

3 Excenters and Excircles

Definition 4. Given a triangle ABC, we call a circle which is outside the triangle, but tangent to all of the sides of the triangle (or their extensions) an **excircle**. The 3 excircles of a triangle correspond to the vertex which is opposite them in the triangle. The center of the A-excircle in triangle ABC is the **A**-excenter and is denoted I_A with exradius r_A .

Corollary 3. The A-excenter is the meeting point of the internal angle bisector at A and the external angle bisectors at B and C.

Theorem 3. If I_A is the A-excenter of $\triangle ABC$, then $\angle BI_AC = 90^\circ - \frac{a}{2}$, $\angle AI_AB = \frac{c}{2}$. and $\angle AI_AC = \frac{b}{2}$.

4 Orthocenters

Definition 5. Given a triangle ABC, an **altitude** dropped from any vertex is the cevian from the vertex which is perpendicular to the opposite side of the triangle. The **orthocenter** is the meeting point of the the 3 altitudes dropped from each vertex to the opposite side and is generally denoted H.

Theorem 4. If H is the orthocenter of $\triangle ABC$, then $\angle BHC = 180^\circ - a$, $\angle HBC = 90^\circ - c$. and $\angle HCB = 90^\circ - b$.

5 Centroids

Definition 6. Given a triangle ABC, the cevian AD is called a **median** if BD = DC. The 3 medians of a triangle are concurrent and called the **centroid**, usually denoted G.

Theorem 5. If AD, BE, and CF are medians of triangle ABC which intersect at centroid G, then we have that $AG = 2 \cdot GD$.

6 Exercises

All of these exercise problems are well known results.

Exercise 1. Show that the circumcenter of a right triangle is the midpoint of its hypotenuse.

Exercise 2. Show that given a triangle ABC, the intersections of the internal and external bisectors of $\angle BAC$ with the perpendicular bisector of BC both lie on the circumcircle of ABC.

Exercise 3. Let ABC be a triangle with circumcenter O and orthocenter H. Let D be the point directly opposite A on the circumcircle, let M be the midpoint of BC, and let E be the reflection of H on BC. Show that

1. BHCD is a parallelogram

2. M is the midpoint of HD

3. E lies on the circumcircle of ABC

4. $\angle BAH = \angle CAO$