Cyclic Quadrilaterals and More Triangles

by Arnav Kumar

1 Cyclic Quadrilaterals

Definition 1. We call a quadrilateral which can be incribed in a circle a cyclic quadrilateral (or a concyclic quadrilateral) and we say that the circle circumscribes the quadrilateral.

From the previous lesson about points in a triangle, we learnt about the properties of triangles inscribed in a circle, and because we know that there are $\binom{4}{3}=4$ distinct triangles in a cyclic quadrilateral, we can make some statements with our knowledge of angles while dealing with circumcircles.

Theorem 1. Any 4 points A, B, C, and D are concyclic iff $\measuredangle A B C=\measuredangle A D C$.

2 Related Theorems

Theorem 2. (Power of a Point) If $A B C D$ is a convex quadrilateral with $A B$ and $C D$ intersecting at P and $A C$ and $B D$ intersecting at Q, then $A B C D$ is cyclic iff either:

1. $A Q \cdot Q C=B Q \cdot Q D$ (or equivalently $Q A D \sim Q B C$)
2. $P A \cdot P B=P C \cdot P D$ (or equivalently $P A D \sim P C B$)

Theorem 3. (Ptolemy's Theorem) Quadrilateral $A B C D$ is cyclic iff

$$
A B \cdot C D+A D \cdot B C=A C \cdot B D
$$

Theorem 4. (Brahmagupta's Formula) If $A B C D$ is a cyclic quadrilateral with sides of length a, b, c, and d, then let the semiperimeter be $s:=\frac{1}{2}(a+b+c+d)$. We have that:

$$
[A B C D]=\sqrt{(s-a)(s-b)(s-c)(s-d)}
$$

Corollary 1. (Heron's Formula) For a triangle $A B C$, if s is the semiperimeter, $\frac{1}{2}(a+b+c)$, we have:

$$
[A B C]=\sqrt{s(s-a)(s-b)(s-c)}
$$

3 Exercises

Exercise 1. Let $A B C$ be a triangle with heights $A D, B E$, and $C F$. Show that:

1. The incenter of $\triangle D E F$ is the orthocenter of $\triangle A B C$.
2. $\angle D E F=180^{\circ}-2 \angle A B C$

Exercise 2. This is a well known fact. Prove that if l is a line tangent to the circumcircle of $A B C$ at A, and D lies on l such that $\angle D A C>\angle D A B$, then $\angle D A B=\angle A C B$.

Exercise 3. (2022 KJMO Q1) The inscribed circle of an acute triangle $A B C$ meets the segments $A B$ and $B C$ at D and E respectively. Let I be the incenter of the triangle $A B C$. Prove that the intersection of the line $A I$ and $D E$ is on the circle whose diameter is $A C$.

Exercise 4. Let $A B C$ be an equilateral triangle, and let P lie on the minor arc $B C$ of its circumcircle. Show $P A=P B+P C$.
Exercise 5. Let $A B C D E F G$ be a regular heptagon. Show that $\frac{1}{A B}=\frac{1}{A C}+\frac{1}{A E}$.
KJMO refers to the Korean Junior Math Olympiad.

