
Concurrency in Go Notes
by Arnav Kumar

Web: https://arnavcs.github.io

Concurrency in Go is a publication by O'Reilly Media Inc. written by Katherine Cox-Buday. This
is a collection of notes that I make about the text as I read it and of Golang as I learn it. This is
not a summary or recreation of the text, but rather a reference for anyone who has already read
the text. As such, please read the text to gain a better understanding of the contents.

1 Basic Concurrency Ideas

Software / Design Pattern Definition Note

Amdahl's Law Amdahl's Law models the improved performance of a fixed task when
the resources are improved. In parallel computing, it is used to predict
the speedup of using multiple processors. The relation is given as fol-
lows:

Slatency(s)=
1

(1¡ p)+ p

s

Slatency the theoretical speedup of the whole program

s the speedup of the part of the task from improved
resources

p the proportion of the execution time that benefits from
the improved resources

Race Conditions A race condition is when two or more operations must execute in the
correct order, but the program leaves the order of execution unspecified.

Data Race A data race is a race condition in which two concurrent operations
attempt to read the same data at an unspecified time (namely one
that could potentially conflict). In the following example, the program
is not given a specified evaluation order, so the code that follows may
execute before, during, or even after the goroutine. As such, the output
is indeterminate.

var data int
go func() { data++ }()
fmt.Printf("%v\n", data)

Atomicity An atomic operation is indivisible or uninterruptible in the context
in which it is operating. For example, the statement i++ consists of 3
atomic operations: retrieving, incrementing, and storing the value of i.

Critical Selection A critical selection is a section of code that requires exclusive access
to a shared resource. In the following code, the fmt.Printf() and the
goroutine are both critical selections.

var data int
go func() { data++ }()
fmt.Printf("%v\n", data)

1

https://arnavcs.github.io
https://arnavcs.github.io
https://arnavcs.github.io


Memory Access Syn-
chronization

To solve the problem of multiple critical selections, only enable one
critical selection to access the same shared resource at a time. This can
be achieved, for example, with a mutex.

Deadlock A deadlock is a state in which all concurrent processes are waiting on
each other. A deadlock can be identified by the Coffman Conditions.

Coffman Conditions There are 4 Coffman Conditions that detect, prevent, and correct dead-
locks. The conditions are as follows:
Mutual
Exclusion

A concurrent process must hold exclusive rights to a
resource at any one time.

Wait For
Condition

A concurrent process must hold a resource and be
waiting for another resource.

No Preemp-
tion

A resource held by a concurrent process can only be
released by that process.

Circular
Wait

A process must be waiting on a chain of processes which
is circular (meaning that the process is directly or indi-
rectly waiting on itself to give a result).

Livelock A livelock is when the current concurrent processes are performing oper-
ations, but these operations do not terminate or move the program
closer to termination.

Starvation Starvation is a superset of a livelock or deadlock where, more generally,
a concurrent process does not receive access to the resources it needs.
A common example is having a �greedy worker� hold on to access to the
resource, while a �polite worker� does not, and thus has less access to
the resource: it is starved.

�Finding a Balance� What should the range of a memory lock be? Should it be broad and
cover multiple critical selections, or should each critical selection get its
own lock? It is important to strike a balance in answering this question
because memory access synchronization is expensive, but you also want
to avoid writing greedy processes to mitigate starvation.

OS Threads OS threads are a primitive at the OS context that can be used to run
processes concurrently. The operating system is responsible for creating
and managing the threads. The threads all have access to a shared
resource space.

Green Threads Green threads are threads that are managed by a program's runtime.

Preemptive and Non-
preemptive Scheduling

Preemptive scheduling is when a process may be interrupted during
execution, whereas non-preemptive scheduling involves processes which
cannot be interrupted, but rather just suspended at certain points.

Coroutines Concurrent subroutines that are non-preemptive (meaning that they
can't be interrupted) are called coroutines. They feature multiple points
to suspend or reenter computation.

2 Section 1



M:N Scheduler A M:N scheduler is the mechanism that Golang uses to host goroutines
and it consists of mapping M green threads onto N OS threads.

Fork-Join Model The model that Golang follows for concurrency, a fork-join model is one
in which a child branch can fork off from parent to be run concurrently.
After the termination of the child branch, it is joined back to the parent
branch at a join point.

Thread Pools Thread pools are a software design pattern that maintains a collection
of threads to map incoming tasks to threads for concurrent execution.

Concurrency vs. Paral-
lelism

Parallelism is a property of a machine to be able to run two tasks simul-
taneously in the considered context. On the other hand, concurrency
refers to when two processes have a lifespan that overlaps. In this sense,
you could have a concurrent program running on a single thread where
multiple threads are simulated. It is also possible that the concurrent
processes run in parallel.

Concurrency is a property of the code, and parallelism is a property
of the execution of the code.

Process A process is a portion of code that requires input to run and produces
an output that is consumed by another process. The input and output
of a process is called communication between processes.

Communicating
Sequential Processes
(CSP)

CSP is the name of a paper, programming language, and the idea of a
describing programs as processes which are sequential and communi-
cate. Used in the paper describing CSP, the CSP language supported
the use of ! and ? to send input into and read output from a process
respectively. In addition, it supported guarded commands. This is the
style of concurrency programming that Golang's channels are based on.

Guarded Command When a statement should not be executed if another statement was false
or a command exited, it is a guarded command. The CSP example below
denotes a process a, from which a character c is continually read (while
there is something to be read), and then inputted into the process b.

*[c:character;
a?c -> b!c]

Process Calculus Process calculus is a mathematical way to model concurrent systems
and analyze their properties.

Should I use CSP style
or OS threads?

The CSP style has certain advantages that it comes with, and more
generally, the Golang developing team suggest to use the CSP style over
primitives like sync.Mutex, but there are certain guidelines outlined
that help determine when you should use channels or OS thread prim-
itives. Follow the first applicable statement.

1. If your code is performance critical, use primitives
2. If you are trying to transfer ownership of data, use channels
3. If you are trying to guard the internal structure of a struct, use

primitives
4. If you are coordinating multiple pieces of logic, use channels
5. Use primitives

Mutex Mutex stands for �mutual exclusion� and enables a way to express exclu-
sive access to a shared resource. A mutex is often used for critical
selections.

Basic Concurrency Ideas 3



Object Pool The object pool pattern is a way to create a fixed number of objects
for use, and is especially useful for objects that are computationally
expensive or objects that will take a lot of memory.

Channels The channel pattern comes from CSP and is a way to pass information.
If there is nothing to be read from a channel, reading from it blocks
execution; waiting for a value to be added to the channel. Additionally,
channels can be closed (to stop writing to the channel), in which case
reading from the channel further empties the channel and reading from
an empty closed channel will indicate that the channel is closed. Chan-
nels can also have buffers to store values to be read later.
As a pattern, to write robust code, separate the ownership of the channel
so that the channel users only have read access to the channel, and the
channel owner has the following responsibilities:

1. Instantiate the channel

2. Perform writes or pass write ownership to another goroutine

3. Close the channel

4. Expose a reader channel for the channel users

4 Section 1



2 Golang Features and Building Blocks

Type Function / Keyword

func This keyword can be used to create named functions, closures, or anony-
mous functions. A named function example is show below.

func helloWorld(numTimes int) {
for ; numTimes > 0; numTimes-- {

fmt.Printf("Hello World!\n")
}

}

An anonymous version of the same function is also shown below.

var f := func(numTimes int) {
for ; numTimes > 0; numTimes-- {

fmt.Printf("Hello World!\n")
}

}

Loops All loops in Golang are declared with the keyword for. You can supply
a stepping mechanism, nothing (for an infinite loop), a condition, or a
range to describe the loop like in the examples below.

for i := 0; i < 10; i++ { fmt.Println(i) }
for { fmt.Println("looping forever") }
j := 0; for j < 10 { fmt.Println(j) }
for i, v := range []int{1, 2} { fmt.Println(i, v) }

Breaking out of a loop and continuing to the next iteration can be done
with the break and continue keywords. Adding labels to loops (by
preceding the loop with labelName:) can specify which loop to break
or continue out to. For example the following code prints 0 0.

outside:
for i := 0; i < 2; i++ {

for j := 0; j < 2; j++ {
if i < j { break outside }
fmt.Println(i, j)

}
}

range A range can be used to iterate over strings, arrays, slices, key/value
pairs of maps, and even channels.

Golang Features and Building Blocks 5



type This keyword creates a type macro, giving the second type the name
passed into the function. For example, the following creates a new type
called HouseNumber.

type HouseNumber int

struct A struct in Golang can be created with the struct {} syntax. Since
this creates a new type, it can be saved to a type variable with type.

type Fruit struct {
name string

}
var apple Fruit = Fruit{"Apple"}

interface Interfaces in Golang can be declared as follows. Here again, we use type
to assign a name to this interface.

type Plant interface {
getHeight() float
getSpecies() string

}

Additionally, the existence of the empty interface in Go is special,
because all types satisfy the empty interface, meaning it can hold any
value. It is interface{}.

go Creates a goroutine that runs the function, method, or closure concur-
rently by multiplexing onto OS threads. Each goroutine is a special
class of coroutine where you do not have to manually describe the sus-
pension and resuming of the routine. At runtime, Golang automatically
suspends goroutines when they are blocked and resumes them when
they are unblocked. Goroutines use the fork-join model for concurrency
and during runtime, a M:N scheduler is used. See the following example
using goroutines modified from the textbook that uses closures to print
"go", "rust", and "c" concurrently in an unspecified order.

var wg sync.WaitGroup
for _, lang := range []string{"go", "rust", "c"} {

wg.Add(1)
go func(l string) {

defer wg.Done()
fmt.Println(l)

}(lang)
}
wg.Wait()

defer Defers the execution of the statement to the end of the function. In the
following example, the mutex isn't unlocked until the after the value of
data increments.

var data int = 0
var mu sync.Mutex
func inc() {

mu.Lock()
defer mu.Unlock()
data++

}()

6 Section 2



sync.Mutex A mutex type that supports the .Lock(), .TryLock(), and .Unlock()
methods. These methods declare exclusive access to the shared resource
that the mutex represents. By convention, a mutex unlock statement is
in a defer statement to avoid panicing meaning that the mutex is not
unlocked.

sync.RWMutex This form of mutex requires the specification of the type of access
desired. An arbitrary number of readers are allowed to read the same
resource granted that there are no writers. In exchange for the greater
control over the memory (and potentially less opportunity for starva-
tion), it gives lower performance than sync.Mutex for a small number
of readers. When the number of readers is high, though, it's performance
is noticeable. The supported methods are those from sync.Mutex, and
the additional .RLock(), .TryRLock(), .RUnlock(), and .RLocker().

sync.Cond A sync.Cond is a �rendezvous point� for goroutines waiting for an event
(an signal between two or more goroutines that carries no informa-
tion). The instantiation of a Cond is done with sync.NewCond which
takes a sync.Locker interface (accessible with .L). Additionally, the
methods .Broadcast(), .Signal(), and .Wait() are available to be
used. Consider the following function from the textbook that �sub-
scribes� a function to a Cond, running the function once when the Cond
first broadcasts.

subscribe := func(c *sync.Cond, f func()) {
var goroutineRunning sync.Waitgroup
goroutineRunning.Add(1)
go func() {

goroutineRunning.Done()
c.L.Lock()
defer c.L.Unlock()
c.Wait()
f()

}()
goroutineRunning.Wait()

}

sync.Once A variable, once, of type sync.Once will support the .Do(func())
method which will only execute the passed function once regardless
of which goroutine the Do method is called, and even what the passed
function is to Do.

sync.Pool sync.Pool is an implementation of an object pool. It can be instanti-
ated by specifying the New field which is a thread safe member variable
function that creates a new object in the pool. the Pool also supports
the methods .Get(), and .Put(object). Make no assumptions about
the state of the instance you get back from .Get(), but objects in the
Pool should be roughly uniform in makeup.

Golang Features and Building Blocks 7



Channels Channels that are read-write, read-only, and write-only that carry values
of type T have types chan T, <-chan T, and chan<- T respectively.
A channel can be closed if it is writable, and is done so with close().
To read all the values in the channel until it is closed, use range. Addi-
tionally, buffer size of the channel can be specified during initiation,
and the default buffer size is 0. Reading from a channel instantiated
with a buffer of capacity 4 can look as follows.

channelOwner := func() <-chan int {
intStream := make(chan int, 4)
go func() {

defer close(intStream)
for i := 0; i < 10; i++ { intStream <- i }

}()
return intStream

}

readIntStream := channelOwner()
for element := range readIntStream {

fmt.Println(element)
}

make() vs. new() make() creates slices, maps, and channels by taking in a type T followed
by a list of expressions and returns a value of type T. On the other hand,
new() simply returns a pointer (type *T) to allocated memory that is
initialized with 0s.

Type Assertions Type assertions �reveal the concrete value� in an interface variable. If
the assertion is false, and that case isn't handled, panic occurs. See the
following example of the syntax of type assertion.

var i interface{} = 1
v, ok := i.(int)
if ok == false {

fmt.Println("Incorrect type")
} else {

fmt.Println(v)
}

select The select statement is able to bind channels together. Namely, all
case statements are simultaneously checked to see if they are ready (for
reading this is a populated or closed channel, and for writing this is a
channel not at capacity). If there is no defualt, then the execution is
blocked until one of the channels is ready. One of the cases is then chosen
at random, and the associated statements run. If there is a default,
then the execution isn't blocked. This can be used to complete other
tasks while waiting for a result.

runtime.GOMAXPROCS() Takes an integer parameter that specifies the number of OS threads that
will host �work queues�.

runtime.NumCPU() Returns the number of logical CPUs that can be used by the current
process.

8 Section 2



iota This keyword is used in conjunction with the constant keyword. It
represents an non-negative integer starting from 0. It resets its value
back to 0 after every constant, and can be used to define enums as
such. For example, the following will create an enum type, Size, where
xs is -2, and xl is 2, and there is no Size value m.

type Size int
const (

xs = Size(iota - 2)
s
_
l
xl

}

Golang Features and Building Blocks 9



3 Concurrency Patterns in Golang

Concurrency Pattern Definition Note

Safe Operations There are a couple different safe operations in concurrent programs,
including synchronization primitives for memory sharing, synchroniza-
tion with communicating, immutable data, and data produced by
confinement.

Confinement Confinement is when it is ensured that data is only accessed by a single
concurrent process. There are two types of confinement: ad hoc and
lexical.
Ad Hoc This is confinement that adheres to a convention set,

but is problematic to enforce convention when working
on large projects.

Lexical This form of confinement uses the compiler to enforce
confinement, by limiting the scope of data and con-
currency primitives. This is useful for data structures
that are not concurrent-safe such as bytes.Buffer as
we can see in the example below from the text.

printData := func (wg *sync.WaitGroup,
data []byte) {

defer wg.Done()

var buff bytes.Buffer
for _, b := range data {

fmt.Printf(&buff, "&c", b)
}
fmt.Println(buff.String())

}

When to use Confine-
ment?

Confinement can mean code that is easier to write and keep track of, and
smaller critical sections, but the techniques to implement confinement
are more involved that using synchronization built-ins.

10 Section 3



for-select Loop The pattern of sitting a select in a for as below is common. The
example shows an infinite loop, but a range could be used.

for {
select {
// useful work with channels
}

}

This pattern can be used to send an iteration variable on a channel or
to loop infinitely until stopped. See the example below modified from
the textbook which demonstrates using a select statement to complete
work while waiting.

done := make(chan interface{})
go func() {

defer close(done)
time.Sleep(5 * time.Second)

}()
loop:
for {

select {
case <-done:

break loop
default:

workCounter++
time.Sleep(time.Second)

}
}
fmt.Println(workCounter)

Goroutine Paths to
Termination

There are 3 paths for a goroutine to terminate. These are

1. When the goroutine has completed its work

2. When it cannot continue its work due to an unrecoverable error

3. When it is told to stop working

The third option is one which allows programs that could possibly cause
deadlock or take up unnecessary memory to be killed, and is the basis
of the done channel concurrency pattern.

Concurrency Patterns in Golang 11



Goroutine Ownership As a good rule of thumb, the goroutine responsible for writing to a
channel and creating the channel is the one responsible for the lifetime
of the channel and stopping it.

done Channel This can be used to convey to a goroutine that it should stop execution.
In the following example, the goroutine created is signaled to stop exe-
cuting by passing a channel which will signal to stop either trying to
read or write to another channel.

printStrings := func(done <-chan interface{}, strings <-
chan string) <-chan interface{} {

ret := make(chan interface{})
go func() {

defer close(ret)
for {

select {
case s := <-strings:

fmt.Println(s)
case <-done:

return
}

}
}()
return ret

}

done := make(chan interface{})
terminated := printStrings(done, nil)

go func() {
time.Sleep(time.Second)

}()
<-terminated

12 Section 3



Safe Operations Suppose you have to compose multiple channels into one: a channel that
closes when any of the passed channels are closed or written to. While
you could simply have a different case in the for-select loop for each
done channel, you could alternatively combine the channels with the or
channel pattern. Here's the composition function below, taken from the
textbook.

var or func(chans . . . <-chan interface{}) <-chan
interface{}
or = func(chans <-chan interface{}) <- chan interface{} {

switch len(chans) {
case 0:

return nil
case 1:

return chans[0]
}

orDone := make(chan interface{})
go func() {

defer close(orDone)
switch len(chans) {
case 2:

select {
case <-chans[0]:
case <-chans[1]:
}

default:
select {
case <-chans[0]:
case <-chans[1]:
case <-chans[2]:
case <-or(append(chans[3:], orDone) . . . ):
}

}
}()
return orDone

}

Concurrency Patterns in Golang 13



Handling Errors Consider encapsulating errors in a struct to handle them better upstream.
For example,

type Result struct {
Error error
Value interface{}

}

Pipelines and Pipeline
stages

A pipeline is a series of stages which take data in, perform an operation,
and pass the data out. Stages are connected by passing of data. The
stage must consume and return the same type, and stages must be
reified by the language so they can be passed around (like functions).
Stages can be either batch processing (where whole batches of data are
operated on at once) or stream processing (where stages only operate
on single elements at a time).

Making a pipeline It is advised to make a stream pipeline when possible in Go. This is done
by making each stage a goroutine and returning and passing channels.
Each stage ranges over the passed channel. Additionally, a generator
function is required to pass input into the pipeline. The done channel
pattern should be used to ensure the cleanup of all goroutines, and will
be passed into all stages of the pipeline as well.
Two parts of a pipeline stage must be preemptable: the creation of the
discrete value and sending the discrete value on the channel.

14 Section 3



repeat Generator The repeat generator outputs a stream which repeats the set of discrete
values passed. See the following code modified from the textbook.

repeat := func(done <-chan interface{}, vals
. . . interface{}) <-chan interface{} {

ret := make(chan interface{})
go func() {

defer close(ret)
for {

for _, val := range vals {
select {
case <-done:

return
case ret <- val:
}

}
}

}()
return ret

}

take Stage The take stage only takes the first num elements of the channel passed
in. The following is modified code from the textbook.

take := func(done <-chan interface{}, values <-chan
interface{}, num int) <-chan interface{} {

ret := make(chan interface{})
go func() {

defer close(ret)
for i := 0; i < num; i++ {

select {
case <-done:

return
case ret <- <-values:
}

}
}()
return ret

}

repeatFn Generator Exactly like the repeat generator, but with a signature of:
func(done <-chan interface{}, fn func() interface{}) <-chan
interface{}
Additionally, rather than a loop over the values of vals, a simple select
can be used with one case as case ret <- fn():.

Empty Interfaces in
Pipelines

Using empty interfaces allows the library of stages and generators used
in a pipeline to be common between different pipelines and at any stage
of a pipeline, type assertion can be used.

Type Assertion Stage This stage has the following type signature (for some type T):
func(done <-chan interface{}, vals <-chan interface{}) <-
chan T
This stage applies type assertion to everything passed in the pipeline.
It is similar to the take stage, but rather it iterates over the range of
the whole channel, and performs a type assertion.

Concurrency Patterns in Golang 15



Fan-Out Fan-In When one stage of the pipeline is slowing down the entire pipeline, you
can consider using more than one goroutine to do the operations of that
stage in parallel, so that more than one datum is being processed in that
stage at a time.

Fan-Out The act of splitting the input of the pipeline into mul-
tiple goroutines.

Fan-In The act of joining multiple results or multiplexing back
into one channel for the pipeline.

The pattern is applicable when the operation of the stage doesn't
care about computation history (including order).

Fan-Out One can create an array of stage goroutines as such

numRoutines := runtime.NumCPU()
routines := make([]<-chan interface{}, numRoutines)
for i := 0; i < numRoutines; i++ {

routines[i] = stage(done, inStream)
}

Fan-In or Multiplexing The following multiplexing code example is modified from the text and
requires that the order of output does not matter.

fanIn := func(done <-chan interface{}, chans . . . <-chan
interface{}) <-chan interface{} {

var wg sync.WaitGroup
multiplexedStream := make(chan interface{})
multiplex := func(c <-chan interface{}) {

defer wg.Done()
for i := range c {

select {
case <-done:

return
case multiplexedStream <- i:
}

}
}
wg.Add(len(chans))
for _, c := range chans {

go multiplex(c)
}
go func() {

wg.Wait()
close(multiplexedStream)

}()
return multiplexedStream

}

16 Section 3



or-done Channel We seem to be using a certain pattern of wrapping our reads from a
channel with a select so that we can safely close our goroutines with
a done. We can abstract this, as follows:

orDone := func(done, c <-chan interface{}) <-chan
interface{} {

ret := make(chan interface{})
go func() {

defer close(ret)
for e := range c {

select {
case <-done:

return
case ret <- e:
}

}
}()
return ret

}

But if the channel c doesn't close, and done is closed, we could have our
for waiting unnecessarily on the next element of c, thus stalling. Thus,
we prefer the following code:

orDone := func(done, c <-chan interface{}) <-chan
interface{} {

ret := make(chan interface{})
go func() {

defer close(ret)
for {

select {
case <-done:

return
case v, ok := <-c:

select {
case valStream <- v:
case <-done:
}

}
}

}()
return ret

}

This abstraction allows us to use simpler loops.

Concurrency Patterns in Golang 17



tee Channel This channel splits the incoming stream into two identical streams. This
code is from the textbook.

tee := func(done, in <-chan interface{}) (<-chan
interface{}, <-chan interface{}) {

out1 := make(chan interface{})
out2 := make(chan interface{})
go func() {

defer close(out1)
defer close(out2)
for val := range orDone(done, in) {

var out1, out2 = out1, out2 // shadowing
for i := 0; i < 2; i++ {

select {
case <-done:
case out1 <- val:

out1 = nil
case out2 <- val:

out2 = nil
}

}
}

}()
return out1, out2

}

bridge Channel This channel flattens a channel of channels into a channel.

bridge := func(done <-chan interface{}, chans <-chan <-
chan interface{}) <-chan interface{} {

ret = make(chan interface{})
go func() {

defer close(ret)
for chan := range orDone(done, chans) {

for elem := range orDone(done, chan) {
select {
case <-done:
case ret <- elem:
}

}
}

}()
return ret

}

18 Section 3



buffer Stage Creates a buffer of the given size.

buffer := func(done <-chan interface{}, in <-chan
interface{}, bufferSize int) <-chan interface{} {

ret = make(chan interface{}, bufferSize)
go func() {

defer close(ret)
for val := range orDone(done, in) {

select {
case <-done:
case ret <- val:

}
}()
return ret

}

Queuing Queuing is the acceptance of work into the pipeline despite the fact that
the pipeline is not ready for more. This is usually implemented with
buffered channels.

Runtime Performance
and Uses of Queuing

Despite accepting more work, the amount of work that must be ulti-
mately completed is the same, and the speed of the CPU is the same.
The runtime performance is not different with queuing, thus. Instead,
queuing is used so that the amount of time a goroutine (specifically a
stage of the pipeline) is spent blocking is reduced. Queuing, in some
sense, decouples certain stages of the pipeline a reasonable amount. The
book states that queuing should be used in the following situations:

Batching
requests in a
stage saves
time

An example of this is the chunking of requests to a
file, which is why the bufio package exists. Addition-
ally, this is useful for database transactions, calculating
checksums, and allocating contiguous space.

Negative
Feedback
Loop

A negative feedback loop, also called a downward-spiral
or death-spiral, is when if there is a delay in a stage of
the pipeline, there is more input for the pipeline. Since
the time the pipeline takes to clear the input is related
to the amount of input, this causes a downward spiral.
For example, consider servers which bounce requests
instead of storing requests in a queue and processing
them one by one.

As such, only implement queuing at the entrance to the pipeline
(negative feedback loop) or at stages where batching is more efficient.

Stable Systems,
Ingress, and Egress

Ingress is the rate at which work enters the system, and egress is the
rate at which it exits the system. Stable systems are those in which the
egress is equal to the ingress. The two unstable systems are when the
ingress is more than the egress (which is a death spiral) and when it is
less than the egress.

Concurrency Patterns in Golang 19



Little's Law Little's Law requires sufficient sampling and determines the throughput
of a pipeline. This is only applicable in stable systems.

L=�W

L the average number of units in the pipeline

� the average arrival rate of units

W the average time a unit spends in the pipeline

Persistent Queues If a pipeline panics with a queue in it, all requests stored in the queue
are lost. Thus, one may want to avoid using a queue in this case, but
if this is not possible, a persistent queue is used which is persisted and
can be read later.

context From the package context, context.Context is a data type that carries
deadlines, timeouts, cancellation signals, and �request-scoped� values
between processes and across API borders. An empty context can be
created with Background() and contexts cannot be mutated so that
any passed contexts will not be changed by the processes they were
passed to. Instead, the child process can create its own context with the
methods WithCancel, WithTimeout, and WithDeadline. More informa-
tion at https://pkg.go.dev/context.

context values Each context also carries values with it in key-value pairs. New con-
texts with different values can be created with .WithValue(parent
Context, key val any). Values can be accessed from a context with
.Value. Since the key and value are interface{} and can accept any
type, there is a loss of type safety, which is why it is recommended to
have data-hiding.

When to use context
values?

It is recommended to only use context values for request-scoped data,
and not as optional parameters to functions. The textbook provides
some heuristics on what can be considered �request-scoped data�.

1. Crosses processes or APIs

2. Immutable

3. Simple types

4. Is not types with methods, but rather just data

5. Doesn't �drive� operations

20 Section 3

https://pkg.go.dev/context
https://pkg.go.dev/context
https://pkg.go.dev/context
https://pkg.go.dev/context
https://pkg.go.dev/context


4 Concurrency at Scale

Definition Note

Errors Errors are first-class citizens in Go, and they represent when your pro-
gram cannot fulfill the requested instructions. There are two main types
of errors that can come up in your program: bugs, and known edge cases.
It is important to convey lots of information in known edge cases. In Go,
error is an interface with one method: Error() which returns a string.

What should errors
convey?

Errors should convey the following important information:

1. What caused the error

2. When and where the error happened

3. A �friendly user-facing message�

4. Resources for getting more information

Providing this information differentiates the known edge cases from the
bugs in the program. Consider the following struct which implements
error.

type WrappedError struct {
Inner error
Message string
StackTrace string
Misc map[string]interface{}

}

func wrapError (err error, msgf string, msgArgs
. . . interface{}) WrappedError {

return WrappedError {
Inner: err,
Message: fmt.Sprintf(msgf, msgArgs . . . ),
StackTrace: string(debug.Stack()),
Misc: make(map[string]interface{}),

}
}

func (err WrappedError) Error() string {
return err.Message

}

How to handle errors
between modules

It is suggested for errors to have a special type for each module, and any
error which is not of the module's error type is malformed, or a bug.
This means that if a module calls another, it should wrap the potential
error in its own error type, while potentially adding more information.

Why should processes
support timeouts?

There are many responses to a timeout, but why should processes
timeout in the first place? Timeouts can:

1. Reduce the amount of pipeline saturation (if the request won't be
repeated if timed out and there's not enough resources to store it)

2. Avoid stale data (data which is no longer relevant after a certain
amount of time)

3. Avoid deadlocks (at the expense of potentially turning the dead-
lock into a livelock)

Concurrency at Scale 21



Why are processes can-
celed?

The outlined reasons for cancellation include:

1. Timeouts

2. User intervention

3. Parent cancellation

4. Replicated requests

Cancellation based
Design

Cancellation can occur any time during the execution of a process, and
it is important to be able to elegantly stop the process. Here are the
biggest issues and what to keep in mind:

Size of
Atomic
Operations

It may be that one of the non-preemptable operations in
a particular algorithm takes a particularly long amount
of time. In this time, what if the process was can-
celed? Split large processes which are non-preemptable
into smaller non-preemptable, atomic operations that
take less time to execute.

Modifying
Global State

What if a goroutine happens to modify a global state,
and was partly done doing so until the routine was
canceled. Rolling back the changes made may be very
tough. Try to keep the number of changes done to a
minimum, perhaps keep track of what changes are to
be made, and then make all the changes at the end of
the routine.

Duplicate
Messages

Suppose we delegate a task to a process A1, which is
taking a long time to complete. We then realize that
A1 has not read from the channel leading into it for
a while, so we cancel it and send the same request to
process A2 to handle. In the time we send the cancel
signal, A1 could have already sent the result to the next
process, which then receives 2 identical messages (from
A1 and A2). How do we address this? Here are some
recommendations:

1. Use heartbeats

2. Have the recipient process accept either the first
or last result reported

3. Poll the parent goroutine for permission to send
the message to the next process before sending
it

Heartbeats Generally, out of the 3 mentioned methods to avoid issues with duplicate
messages, using what are called heartbeats is the most straightforward.
Heartbeats are just a way for goroutines to let others know that they
are still alive, which is to say that they have not experienced any sort
of deadlock and are getting work done. The two type of heartbeats are
those that beat based on a time interval, and those that beat at the
start of a unit of work.

22 Section 4


	1 Basic Concurrency Ideas
	2 Golang Features and Building Blocks
	3 Concurrency Patterns in Golang
	4 Concurrency at Scale

